How to outsmart fraudsters on data page hinge – More tips on secure passport design

By | February 27, 2017

Most authorities would agree that one of the main challenges they face is coming from sophisticated fraudsters seeking to tamper with legitimate passports.

A variety of tools and techniques have been employed to address just this threat. However, criminals and other malicious forces remain as determined as they are ingenious.

To ensure the integrity of passports, the design of one particular component – commonly known as the data page hinge – plays a key role.

The hinge is responsible for attaching the all-important data page to the rest of the booklet.

So getting this aspect of passport construction right can create a huge obstacle for anyone hoping to insert a fake data page, or modify the existing one.

For this article, we slapped on our lab coats and decided to test everything.

  • We reviewed 110+ passports
  •  We anatomized 43.

In the end we discovered 3 main factors that need to be taken into account when specifying a hinge. We also looked at the potential issues raised by the use of polycarbonate data pages and the solutions adopted by countries.

Finally, we identified which of these approaches represents the most effective weapon in the on-going fight against passport fraud and forgery.

And in today’s guide, we are going to show you everything we learned.

So what’s the real story here?

Readers familiar with the 7th edition of ICAO 9303 will know that part two of the publication lists the main threats to machine readable travel passports.

One of them is the removal and substitution of entire pages.

Naturally, the top target for fraudsters is always likely to be the data page, which contains the genuine holder’s personal details.

Over the last decade, a growing number of countries have adopted data pages constructed from polycarbonate. As we explained in this recent article, polycarbonate provides some important security benefits. However, given that the hinge (also known as the sleeve or flap) is the section that links the data page with the rest of the booklet, securing this aspect clearly represents another vital part of passport security design.

But when it comes to creating the hinge, it is important to remember that security is not the only factor that needs to be considered. Flexibility and durability must also be taken into account.

Now let’s consider flexibility

  • From the user’s perspective, flexibility is important because it means that the booklet opens flat for easy checking at border control, but closes completely to maintain privacy.
  • For the manufacturer, flexibility is a major concern because the hinge must integrate easily into the bookbinding process.

And what about durability?

Any passport booklet must pass ICAO minimum durability tests. This includes the Physical Damage Evaluation Method, with mechanical stress applying force of 60N (Newton) an attempt to tear the data page.

After being subjected to these tests, no part of the data page should be missing and more than 90% of the binding must be intact.

To demonstrate the level of durability that can be achieved, here is a member of our lab team suspended from a passport by nothing more than the hinge. In this example, several hundred N are being applied. We also applied 500,000 to 1,000,000 turns to some data page hinges.

Don’t try this at home!

Now on to security

As far as the hinge is concerned, an obvious threat is the removal of the data page and the integration of another booklet. Even more worrying is the use of the hinge as a potential entry point to attack the data page and replace genuine personal data with forged information.

Here’s the battle scene

For fraudsters, one potential opportunity is to cut the hinge along the original data page and then paste in a falsified replacement.

Alternatively, they’ll try to slice the data page to swap genuine personal information with fraudulent details. Common methods include using hairdryers, or a scalpel to create a split, starting at the edges of the page. Sometimes attempts are made to weaken the data page first, using chemicals or extremes of temperature.

To counter this, any small initial cut in the hinge must not weaken the structure of the data page. The hinge must be constructed in such a way that does not allow the cut to spread easily, allowing the data page to become detached from the booklet.

So why does polycarbonate create a paradox?

Polycarbonate is a fused material. It becomes a mono block after lamination. With printing and personalization on different layers inside the body and a tactile surface, it is highly resistant to splitting attacks.

The paradox lies in the fact that, whilst polycarbonate offers outstanding data page security, it is not flexible enough to act as the hinge as well.

Some approaches to polycarbonate data page construction address this by using a different type of plastic at its core.

This can then extend to form the hinge. However, this means that the data page is no longer 100% polycarbonate and therefore not a single block of undelaminable plastic.

The introduction of a second material introduces a vulnerability: the possibility of delaminating the data page and accessing the personalization data it contains, as indicated below.

To avoid compromising security, non-polycarbonate material must only be used as part of the data page construction in a way that does not weaken the data page structure itself, whilst remaining securely attached.

What’s the answer, then?

The 3 main approaches to constructing hinges for polycarbonate data pages:

Hinge attached to the side of the data page

Using this technique, the hinge is attached to the side of the data page, either with mechanical elements such as pins and holes, or using ultrasonic welding.

First, the good news

A hinge that is only attached to the top part of the data page offers good security; it does not compromise the data page’s integrity. This sort of attachment is more usually done with ultrasonic welding. This uses very high frequency vibration to heat up the polycarbonate and hence help to Here’s the catch

Rigidity can be an issue. This approach impacts negatively on the flexibility of the data page, preventing proper opening and closing and posing problems in terms of manufacturing. It can also create a point at which the data page can be cut out. embed the component within it.

Swedish ePassport hinge front under UV

Swedish ePassport hinge back with natural light

But these security concerns can be addressed

Even if the genuine data page is removed, attaching a new one is very difficult. When combined with tamper evident features (such as printing a special pattern on the hinge in visible and invisible inks, embossed text and laser engraved data) any attempt at replacement becomes readily apparent.

UV printing can also be employed to leave obvious traces of tampering, when the document is shone under a UV light.

A personalized hinge further enhances the level of security.

At present, 16 countries are using a passport with a hinge attached to the side of the data page.

Hinge integrated all the way across the data page

With this approach, the hinge is not partially embedded into the document. Instead it forms an entire layer of the document: either attached to the side or in the middle of the structure.

Here’s something important to think about

This type of hinge lacks security because it weakens the structure of the data page and facilitates fraud. The position of the hinge creates a weak point that can allow the data page to be split.

Hinges attached to the side of the data page across its entire length can also make it possible to hide counterfeiting attacks. Potentially, a fraudster could remove the hinge, modify the personalized layers of the data page, and then hide it back inside the booklet.

There’s no getting round it

Because it is not 100% polycarbonate, this solution also makes the slicing type of attack easier. Admittedly, some techniques do use polycarbonate, and are milled. However, this does not correctly address the issues of hinge flexibility and durability. On the plus side, this approach can incorporate tamper evident features.

At present, just 6 countries are using this method of passport construction.

Hinge partially integrated inside the data page

Here the hinge is inserted into the data page, but does not go across its full length. As a result, it does not create weaknesses in the structure, or facilitate slicing.

In theory, compared to an external hinge, fraudsters may perceive an angle of attack. However, if fused properly, this technique does not open the door to slicing by weakening the structure. The use of feature holes in the hinge material will provide better adhesion of polycarbonate layers during lamination.

The potential benefits don’t stop there

Optimum tamper evidence is achieved when the hinge has a visible area between the data page and the stitching. Indeed, many of the passports that use this type of hinge incorporate tamper evident features, including:

  • UV printing and/or UV threads in the fabric
  • Precisely aligned patterns
  • Combination with offset printing which will be destroyed if the data page is removed

Currently, 21 countries deploy passports using this hinge design.

So what’s the conclusion?

First, here’s a quick reminder of the 5 key qualities displayed by an effective hinge for polycarbonate data pages:

  1. Does not compromise the construction of the data page or the security elements within it
  2. Is made of a durable and flexible material that passes ICAO testing
  3. Can be firmly and securely attached to the data page and booklet, and backed by effective countermeasures
  4. Is near-impossible to manipulate without leaving visible marks
  5. Includes features that make a replacement more visible

Finally, how do the three options compare?

The hinge integrated across the whole data page is the least convincing choice.

From a security perspective, it has significant drawbacks. This approach weakens the data page structure and can facilitate slicing. Furthermore, it is not very flexible. Finally, there are question marks over its durability, since its structure usually features a lower percentage of polycarbonate. All these concerns are reflected in a low rate of adoption in the passport market.

The hinge attached to the side is a significantly better option, though it offers not the best in class flexibility. It offers fairly good security, since it does not bring any weakness to the data page structure and usually features some tamper evident elements. It enjoys strong levels of adoption by governments.

Top position, however, goes to the hinge partially integrated inside the data page.

Crucially, this approach does not create weakness in the structure, or facilitate slicing. Feature holes in the hinge material offer better adhesion of polycarbonate layers during lamination, and many applications include tamper evident features.

In a world in which border security is a major concern for so many, reassurance can be found in the fact that almost half the governments currently deploying a polycarbonate data page in their passports have adopted this ‘gold standard’ of hinge design.

It’s time for us to take off our lab coats. Stay tuned for the next edition of More tips on secure passport design.

Now it’s over to you

Do you have a comment to share on passport hinge? Want to find out more?

Do not hesitate to send a request to [email protected] . We’d also welcome any suggestions on how this dossier could be improved, or proposals for future articles.

We look forward to hearing from you.

Mobilize Gemalto secure document expertise

Gemalto enables both public and private sector institutions to combat identity fraud.

Active in the field of secure documents for over 150 years, Gemalto continuously innovates the market as the world leader in digital security with 2015 revenues of €3.1 billion.

Our 14,000 employees operate out of 99 offices, 34 personalization and data centers, and 24 research and software development centers located in 46 countries.

In the public sector, Gemalto provides secure documents, robust identity solutions and ID verification systems, border management and biometric solutions and services for more than 100 government programs worldwide including 30+ ePassport programs.

Source: Gemalto